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Qubit initialization is a critical task in quantum computation and communication. Extensive

efforts have been made to achieve this with high speed, efficiency and scalability. However,

previous approaches have either been measurement-based and required fast feedback,

suffered from crosstalk or required sophisticated calibration. Here, we report a fast and high-

fidelity reset scheme, avoiding the issues above without any additional chip architecture. By

modulating the flux through a transmon qubit, we realize a swap between the qubit and its

readout resonator that suppresses the excited state population to 0.08% ± 0.08% within 34

ns (284 ns if photon depletion of the resonator is required). Furthermore, our approach (i)

can achieve effective second excited state depletion, (ii) has negligible effects on neighboring

qubits, and (iii) offers a way to entangle the qubit with an itinerant single photon, useful in

quantum communication applications.
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Qubit initialization is fundamental and crucial for many
quantum algorithms and quantum information proces-
sing tasks. The ability to quickly reset qubits to the zero

state is one of DiVincenzo’s essential criteria for building a
quantum computer1 and is critical for quantum error
correction2–4, where the reset of syndrome qubits needs to be
accomplished with high fidelity in the time scale of a single qubit
pulse. Furthermore, significant reduction of state preparation and
measurement (SPAM) errors can be achieved by evacuating
residual excited state populations with high fidelity5,6. The sim-
plest way to reset qubits is to passively wait for them to de-excite,
but as qubit relaxation times increase beyond 100 μs7,8, this
method becomes impractically slow. Alternatively, active reset
implementations can shorten the wait time between cycles and
significantly improve computational efficiency9,10.

Various reset protocols for superconducting qubits have been
proposed which fall into two main types: measurement- and non-
measurement-based protocols. In measurement-based schemes, a
qubit is measured and either heralded in the ground state11, or
else is found to be in the excited state and reset via a conditional
π-pulse6,12–15. These protocols depend heavily on measurement
fidelity and suffer from measurement-induced state mixing5,16. In
addition, the hardware implementation of necessary short-latency
feedback loops is also a challenge. In non-measurement based
protocols, qubits are coupled to a lossy environment, usually a
resonator. While numerous approaches to this have been pro-
posed, they each suffer from their own drawbacks. For instance,
in one such approach, flux control17,18 is used to rapidly tune the
qubit frequency to that of the resonator. However, this process
significantly affects neighboring qubits via crosstalk19,20. Another
approach is based on a microwave-induced interaction between
the qubit and a low-quality factor resonator9,21. However, the
involvement of the second excited state f

!! "
makes these schemes

complicated and necessitates sophisticated calibration. Further-
more, intense microwave driving is required to activate the
required cavity-assisted Raman processes21–23, affecting adjacent
qubits as well. In21, an additional resonator is required to achieve
the best performance. In contrast to the above methods, the
driven reset scheme proposed in10 is free from flux control and
complicated pulses. On the other hand, this protocol requires that
the resonator dissipation rate κr be smaller than the dispersive
shift χ, imposing a trade-off between readout speed and fidelity.

In this work, we demonstrate a rapid and unconditional
parametric reset scheme for tunable superconducting qubits. By
parametric modulation of the qubit frequency, a controllable
interaction is generated between the qubit and a lossy readout
resonator. This interaction unconditionally transfers the qubit
excitation to the resonator and thus resets the qubit on demand.
Using this method, we can suppress the residual excited popu-
lation to 0.08% ± 0.08% within 34 ns. We also demonstrate
effective f

!! "
state depletion in the case when leakage to higher

states is non-negligible. Our protocol only involves AC modula-
tion of at most two frequencies and does not need sophisticated
calibration. Moreover, it has a negligible effect on subsequent
gates and other qubits. It is compatible with circuit quantum
electrodynamics systems24–26 and can be applied to all frequency-
tunable superconducting qubits, requiring no additional hard-
ware or modifications to chip components. The method also
imposes no restriction on operation flux position or specific
system parameters such as resonator dissipation rate κr or
dispersive shift.

Results
Theory. Our qubit reset protocol is based on a parametric acti-
vated interaction between a tunable qubit and a rapidly decaying

resonator. Such a parametric modulation induces an effective
tunable coupling between the qubit and other quantum systems
such as another qubit or resonator27–29 and has been used to
implement multi-qubit quantum gates30–35, state transfer36,37,
switches for quantum circuits38 and parity measurements39. In
our reset protocol, the parametric modulation induces Rabi
oscillations between e; 0j i and g; 1

!! "
, where s; lj i denotes the

tensor product of the qubit state sj i (the cases sj i ¼ g
!! "

and
sj i ¼ ej i correspond to the ground and excited states, respec-
tively) and the resonator Fock state lj i. When the qubit is excited,
as illustrated in Fig. 1a, the population can be transferred from
the qubit ( e; 0j i) to the resonator ( g; 1

!! "
), which then rapidly

decays to the target state g; 0
!! "

at decay rate κr, which is mainly
due to the large photon emission rate of the readout resonator.

We consider a qubit-resonator coupled system described by the
Jaynes-Cummings model. In the dispersive regime, there is no
population exchange due to the large detuning between the qubit
and the resonator. The external flux Φ is modulated as
ΦðtÞ ¼ Φþ Φm cosðωmt þ θmÞ, where Φ is the parking flux and
Φm, ωm, θm is the flux modulation amplitude, frequency and
phase, respectively. Due to the nonlinear dependence of the qubit
frequency on the flux bias, the qubit frequency ωq(t) is, in general,
described by a Fourier series with non-trivial higher-order terms,
i.e. ωqðtÞ ¼ ωq þ∑k¼1A

ðkÞ
m cos½kðωmt þ θmÞ& where AðkÞ

m are the
Fourier coefficients and ωq is the average frequency in the
presence of the modulation31. In the case of small modulation, we
take the leading term of the qubit frequency as an approximation,
i.e. ωqðtÞ ' ωq þ AðαÞ

m cos½αðωmt þ θmÞ&, where α= 1 for the qubit
parked away from the sweet spot, and α= 2 for the qubit parked
in the sweet spot (in the latter case the odd Fourier coefficients
Að2kþ1Þ
m vanish31). The oscillation of the qubit frequency induces a

series of sidebands ωq þ nωm, where n is an integer. When the
frequency of one sideband satisfies the constraints
nωm ¼ (Δ ¼ ωr ( ωq, the transition between the states e; lj i
and g; l þ 1

!! "
is activated. The effective coupling strength can be

derived as gn ¼ gqrJnð
AðαÞ
m
ωm

Þeiβn , where gqr is the averaged coupling
strength between the qubit and the resonator during the

modulation, Jn(x) are Bessel functions of the first kind, and βn ¼

nθm ( AðαÞ
m

αωm
sinðαθmÞ is the interaction phase31.

We consider the single excitation subspace spanned by
f e; 0j i; g; 1

!! "
g, within which the dynamics of the reset protocol

can be modeled by the non-Hermitian Hamiltonian

Heff ¼
0 jgnje

iβn

jgnje
(iβn (iκr=2

" #

; ð1Þ

where ∣gn∣ is the absolute value of gn, and the non-Hermitian
term− iκr/2 accounts for the decay of the photon in the
resonator. The population evolution can be expressed as
Psjs0 ðtÞ ¼ j sh je(iHeff t s0

!! "
j2, where the system is initially prepared

in the state s0
!! "

, and sj i is one of the states f e; 0j i; g; 1
!! "

g.
The real parts of the eigenvalues {λk} of Heff determine the

oscillation rate of Psjs0 ðtÞ, while the imaginary parts of {λk}
determine the exponential decay rates. We define the reset rate
Γ ¼ 2minkðjIm½λk&jÞ as it is the smallest value of the decay rates
and determines the overall protocol reset speed. Three different
regimes are possible – corresponding to overdamped, critically
damped and underdamped oscillations of Psjs0 ðtÞ, respectively – and
our qubit reset works in all three regimes. For small modulation
amplitudes, i.e., ∣gn∣ < κr/4, the reset is in the overdamped regime
where the excited state population decays without oscillating. In this
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regime, the reset rate Γ increases with the modulation amplitude. At
the critically damped point ∣gn∣= κr/4, the population shows a
maximum reset rate κr/2 with no oscillation. When the modulation
amplitude satisfies ∣gn∣ > κr/4 the reset becomes underdamped, and

the population oscillates at rate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jgnj

2 ( κ2r=4
q

, and the reset rate
remains at κr/2.

Experimental realization. Our experimental setup is depicted in
Fig. 1b and consists of three transmon qubits40,41. Each transmon
is capacitively coupled to a resonator with frequency ωr/2π from
6.44 GHz to 6.68 GHz and coupling strength gqr/2π around 80
MHz. Individual Purcell filters42,43, implemented by λ/4 resona-
tors, are inductively coupled to each readout resonator, and XY
control and flux control (Z) lines are coupled to each qubit.
Fig. 1c displays the frequency ωq of a transmon qubit with respect
to the flux. The reset pulse is generated from an arbitrary
waveform generator (AWG). After 30 dB attenuation, it is fed
into the Z line, which results in frequency modulation of
the qubit.

We first demonstrate parametric reset on isolated Q1 (Q2, Q3
are tuned to their minimal frequencies through a fixed DC bias).
Fig. 2a shows the detailed sequence: A π-pulse is applied through
the XY driveline to prepare the qubit in state ej i. A sinusoidal
parametric reset pulse A sinðωmtÞ of duration 1000 ns is applied
through the Z line, with amplitude A and frequency ωm. Finally,
Q1 is measured by the traditional dispersive readout. Fig. 2b
shows the measured ej i population after this reset process, as a
function of modulation amplitude A (displayed in units of the
magnetic flux quantum Φ0).

Several strips—labeled n= 1, 2, 3, and corresponding to n-th
order modulations—are visible, where the population of ej i drops
dramatically compared to other regions. In these regions, one of
the qubit’s modulation sidebands is close to the resonator
frequency, and the population transfers from the qubit to the

resonator. When the operation point (ωq/2π= 5.784 GHz, ωr/
2π= 6.441 GHz, Δ/2π=−0.659 GHz) of the transmon qubit is
close to the sweet spot, the qubit frequency will undergo two
oscillations for every cycle of the parametric drive. As previously
described in the theory section, the actual qubit modulation
frequency is thus 2ωm, twice that of the flux modulation
frequency ωm. There are several thin and unmarked strip-
shaped regions in the figure due to the imperfect match between
the operation point (0.004 Φ0) and the sweet spot. It is worth
noting that sweet spot operation is not a requirement for our
parametric reset protocol, and non-sweet spot operation is also
suitable (see Supplementary Note 5). Three points A, B, C in the
n= 1 region were selected and, for each point, the qubit was first
prepared in the ej i state and the population pe of ej i was then
measured as a function of the duration of the parametric reset
pulse τ by direct readout measurements (see Fig. 2c). Corre-
sponding to small modulation amplitude, point A (blue) lies in
the overdamped regime where the ej i state population decays
slowly and without any oscillation. At point C (red), the
modulation amplitude is large, and the ej i state population
oscillates heavily, corresponding to the underdamped regime.
Solid lines are fit to the theoretical model for Psjs0 ðtÞ (Supple-
mentary Note 4). From the fitting, we extract κ(1

r of 46 ns, which
agrees with the direct measurement of the photon decay
(κ(1

r ' 50 ns) of the resonator via AC Stark shift44. The insert
displays Γ/κr vs. ∣gn∣/κr predicted by theory, where Γ is the reset
rate for qubit state ej i. Γ/κr increases in the overdamped regime
and saturates at κr/2 in the underdamped regime. Results for
point B, chosen to be close to the critically damped point, are
displayed in green in Fig. 2c and show a population decay much
faster than in the overdamped regime, with no oscillations
observed. A master equation simulation was performed of the
whole process using all experimental parameters, and the results
are shown in Fig. 2d. Due to the limited sampling rate of the
AWG, the amplitude of the modulation signal is heavily
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Fig. 1 Schematic of the reset process and diagram of the device. a Jaynes-Cummings ladder diagram of the qubit-resonator coupled system. gj i, ej i and
0j i, 1j i denote the qubit and resonator lowest two states respectively. The dashed light red circle represents one of the sideband modes induced by the
parametric modulation. The dashed arrow labeled κr illustrates the decay process of the resonator. b Simplified circuit diagram of the chip. Each transmon
qubit is coupled to a readout resonator and an individual Purcell filter. The readout signal is amplified by an impedance-matched Josephson parametric
amplifier (IMPA). c Typical transmon resonance frequency ωq with respect to the flux bias. The reset pulse is generated by AWG. After 30 dB attenuation,
it is added to the flux control line. The qubit’s frequency modulation (brown) activates effective coupling between the qubit and its readout resonator and
facilitates the reset process. Two cases are depicted: (1) operation point at or near the sweet spot (cyan, main text); (2) operation point away from the
sweet spot (orange, Supplementary Note 5).
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attenuated by the analog reconstruction filter at a high frequency.
We reproduce this lowpass filter effect of the AWG in our
simulation and find the main features agree with the experiment
very well. In situations where high-frequency modulation is a
must (e.g., in the case of large detuning between the qubit and
resonator and where the first-order region is preferred), the AWG
can be replaced with a microwave source to overcome this
limitation.

To measure the residual ej i state population, we perform a Rabi
population measurement (RPM)10,45 involving both the ej i and

f
!! "

(second excited) states in the sequence shown in Fig. 3a. To
acquire the Reference data (red squares), we first apply a π-pulse
to flip the population between the g

!! "
and ej i states, then perform

a rotation around X between ej i and f
!! "

of angle θ (θ-pulse).
Varying the angle θ results in Rabi oscillations of the ej i state
population, as the Reference (red) shows. The solid line is a
sinusoidal fitting. For the Signal data (blue circles), no π-pulse
between g

!! "
and ej i is applied. However, there is still a visible and

relatively small Rabi oscillation due to the residual thermal ej i
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Fig. 2 Realization of the parametric reset on Q1. a Experimental sequence of the parametric reset. A π-pulse is applied to the qubit and followed by a
sinusoidal parametric reset pulse. The amplitude A and angular frequency ωm are two adjustable parameters. b Two dimensional scan of the ej i population,
pe when ωq/2π= 5.784 GHz, ωr/2π= 6.441 GHz, Δ/2π=− 0.659 GHz. The x-axis is the parametric amplitude in the magnetic flux quantum Φ0 and the
y-axis is the modulation frequency. First, second, and third-order modulations are labeled n= 1, 2, 3, respectively. c Time evolution of the excited state
population, after parametric modulation corresponding to the three points A, B, C in the n= 1 region in b. Dots are the raw data acquired by direct readout
measurements, and solid lines are fits to the theoretical model. The insert shows theoretical values of Γ/κr vs. ∣g n∣/κ, where Γ is the reset rate of the qubit
during the reset process. d Master equation simulation of the whole process with the same parameters as the experimental (b).
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Fig. 3 Residual ej i state population measurement and improvement of the readout fidelity. a Residual ej i population measurement with Reference (red)
and Signal (blue) Rabi oscillations with solid sinusoidal fitting curves. From the fitting, two Rabi amplitudes(Asig and Aref) can be extracted. The Reference
and Signal pulse sequences are shown in the upper left corner. P1 and P2 are two measured points in b. b ej i population measurement with different
parametric reset pulse duration τ. Each data point is acquired by a "two-point method" described in the main text. At 34 ns, the population of the ej i decays
to the first minimum value 0.08 ± 0.08% and remains below 0.1% after 1000 ns. The error bars are statistical ( ± 1 s.d.) with 50 repetitions. c Readout
fidelity enhancement with the 34 ns parametric reset pulse. The circles (squares) display the IQ analysis with (without) the 34 ns parametric pulse. Both
gj i (blue) and ej i (red) are prepared and measured. When preparing the gj i state, the residual ej i state population due to the thermal excitation decreases
more than one order of magnitude after applying the parametric reset pulse. The readout fidelity consequently improves from 96.13% to 99.43% for gj i
and 92.69% to 96.05% for ej i respectively.
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population. The final portion of residual ej i population pe is
calculated by Asig/(Asig+ Aref), where Aref and Asig are the fitted
amplitudes of the red and blue oscillations, respectively. Without
any parametric reset, the measured ej i residual excited state
population is around 2.38 ± 0.06% which corresponds to a 75 mK
effective temperature.

We attribute this relatively high effective temperature to stray
infrared radiation and insufficient thermalization of the sample
box to the cold finger, which can be improved by careful shielding
and better thermal contact45,46. The time evolution of point C is
shown in Fig. 2c. When τ= 34 ns, the ej i state population decays
to its first minimum and reaches a steady low level after 1000 ns.
Both the first minimum and steady-state points are of practical
significance. The former is useful when reset speed is the priority,
and the reset protocol does not need to be reused immediately;
the latter is insensitive to parametric modulation time and
requires fewer calibrations. To reduce measurement error and
accurately deduce the ej i residual population after the parametric
reset pulse, a "two-point method"45 was used to increase the data
acquisition efficiency. Instead of measuring the whole trace as in
Fig. 3a, only the maximum and minimum points of the oscillation
— marked as P1, P2—were measured (2 × 105 times each) to
determine each value of pe. Fig. 3b shows the residual population
of excited state ej i after variable parametric reset duration τ
deduced via this two-point method. Each point corresponds to 50
measurements of pe with one standard deviation error bar. The
minimum residual population reaches 0.08 ± 0.08% at 34 ns and
remains below 0.1% after 1000 ns, outperforming all existing reset
schemes (Supplementary Note 3). Based on the rate model from
Supplementary Note 6, we estimate the residual excitation
population to be 0.02% in thermal equilibrium.

The parametric reset process decreases state preparation error,
yielding better readout fidelity, as it effectively reduces the
thermal population as illustrated by Fig. 3c, where circles
(squares) represents the measurement with (without) the 34 ns
parametric reset pulse. With the parametric reset, the thermal
excitation pe is reduced by more than an order of magnitude
when preparing the g

!! "
state. Performing state discrimination

analysis yields a significant improvement of the readout fidelity
with g

!! "
from 96.13% to 99.43% and ej i from 92.69% to 96.05%,

respectively.

Reset of the f
!! "

state by two-tone parametric drive. Leakage to
the second excited state f

!! "
can be an important source of error

during two-qubit gates47 and measurements48. In this section, we
extend the single-tone parametric modulation scheme to one that
uses two-tones in order to achieve effective f

!! "
state reset. In this

case, the reset pulse has the form A1 sinðω1tÞ þ A2 sinðω2tÞ, where
A1, A2 and ω1, ω2 are the amplitudes and frequencies of the two
tones used, respectively, and the corresponding Fourier expansion
of the qubit frequency has four main frequency components:
2ω1, 2ω2, ω1 ± ω2. As shown in Fig. 4a, depletion of the f

!! "
state

comprises two processes. First, one frequency component of the
parametric modulation causes f ; 0

!! "
to interact with e; 1j i, with

the latter decaying to e; 0j i at the resonator dissipation rate κr.
Similarly, e; 0j i decays to g; 0

!! "
via the second frequency com-

ponent of the modulation. Fig. 4b is a scanned map of the ej i state
population after a 1000 ns two-tone parametric reset pulse, with
the qubit initially prepared in the f

!! "
state. We consider the case

where A1=A2, and scan ω1/2π and ω2/2π from 230 MHz to 730
MHz. Two spider-like regions can be seen in the figure, one
consisting of multiple blue strips and the other consisting of
multiple yellow strips. These two regions correspond respectively
to the first and second decay processes mentioned above. Six of

these colored strips are annotated in the figure, where strips 1,2
(4,5) correspond to the regions where 2ω1ð2Þ ¼ (Δ
(2ω1ð2Þ ¼ (Δ( η), and strip 3 (6) corresponds to the region
where ω1 þ ω2 ¼ (Δ (ω1 þ ω2 ¼ (Δ( η). Here, η=− 254
MHz is the anharmonicity of Q1. We perform a master equation
simulation of this two-tone parametric reset process and find that
the results (Fig. 4c) closely agrees with the experiment. See
Supplementary Note 8 for more scan maps and theoretical
explanation. In the rhombus area marked R in Fig. 4b, where
strips 1 and 6 intersect, the two decay processes coexist, and the
region is thus suitable for fast depletion of the f

!! "
state. In

Fig. 4d-e we consider the case where A2= 1.8A1 and measure the
time evolution of the g

!! "
, ej i, f

!! "
states in the R region. Circular

data points in these figures are experimental data, and the solid
lines fit to a multi-level decay model49. The in-phase(I) and
quadrature(Q) components of each state from the readout are
shown inset in Fig. 4e. The qubit was prepared in the ej i (Fig. 4d)
and f

!! "
(Fig. 4e) states, respectively, and the population of all

excited states 1− Pg is shown in Fig. 4f. The excited population
for both initial states shows nearly exponential decay and reaches
the readout floor within 600 ns (initial state: ej i) and 1000 ns
(initial state: f

!! "
). From the multi-level decay model49, we esti-

mate the decay rates to be 1/100 ns for state ej i and 1/117 ns for
f
!! "

during the reset process. The measured reset fidelity is
99.23%, limited by the readout fidelity.

Scalability of the protocol. To study the protocol’s scalability,
parametric resets were simultaneously performed on two qubits
Q1 and Q2. In this case, all qubits were tuned to operation points
near their sweet spots. The sequence is shown in the top part of
Fig. 5a. Both qubits are prepared in the ej i state by a π-pulse, and
parametric modulation is applied separately to each qubit
through their associated flux lines. The time evolution of the
excited state population pe of the qubits is measured with varied
reset duration τ. As seen in Fig. 5a, pe decays quickly and remains
at a low level from 2 μs onwards, demonstrating the feasibility of
our parametric reset protocol in a multi-qubit system. One dis-
advantage of previous reset protocols involving flux pulses17,18 is
that the Z pulse for the reset can significantly affect all subsequent
gates20,50–52 or cause a frequency shift of neighboring qubits53.
The parametric modulation we propose consists of one or two
frequency components only and thus has negligible effects on
neighboring qubits. To prove this, Clifford-based randomized
benchmarking (RB) was performed on Q2(Q3) when Q1 was
reset with a single-tone parametric pulse (the results of RB with
two-tone reset are given in Supplementary Note 10). From the RB
data (Fig. 5b), we find that the reset process decreases the average
gate fidelity by only 0.08% for nearest neighbor qubit Q2, and has
almost no effect on the next-nearest neighbor qubit Q3, with only
0.03% fidelity difference. To further probe the effect of the reset
process on the neighboring qubits, we have also performed a
series of Ramsey measurements, with results given in Supple-
mentary Note 7. Together, these experiments demonstrate that
our parametric reset protocol has a negligible effect on adjacent
qubits in terms of coherence, frequency and gate fidelity.

Discussion
In our single-tone parametric scheme, the first minimum point
has practical significance when there is no immediate gate on the
same qubit or when gates are immediately applied to other qubits,
such as in state transfer54 or quantum simulations55. In scenarios
where photon depletion of the resonator after qubit reset is a
must, a 5/κ (250 ns) duration passive wait is sufficient to deplete
the mean photon number below 0.01, corresponding to a
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negligible stark shift of 51.5 kHz. Taking re-thermalization
(Supplementary Note 6) into consideration, the net fidelity at the
end of this process is 99.86%. An alternative way to achieve
photon depletion of the resonator is to reset the resonator
actively56,57. If speed is not a priority, a one-tone reset with the
modulation always on is an option, requiring 1000 ns and
achieving 99.9% fidelity. When f

!! "
state leakage is not negligible,

two-tone modulation is preferable and it takes 1000 (600) ns for
both the ej i and f

!! "
state ( ej i only) to reach the 0.77% readout

floor. In conclusion, the parametric reset schemes we proposed
have a high degree of flexibility that allows them to be used in a
variety of different scenarios. We summarize the performance
and use case scenarios of our protocols in Supplementary Table 2.

We have demonstrated a parametric reset protocol realized in
transmon qubits which can be completed in 34 ns (284ns if one
waits an additional five times the resonator Tr

1 ¼ 1=κr time for
the resonator to deplete). The speed and fidelity 99.92% (99.86%
if 5/κr is included) of our approach outperforms all existing reset
schemes (Supplementary Note 3) and, furthermore, has the added
advantages of flexibility and scalability. In theory, the reset time
can be further decreased to less than 10 ns by increasing
the modulation amplitude of the reset pulse or by increasing the
coupling strength gqr in the qubit design. Moreover, as the RB and
the Ramsey experiments show, our parametric modulation
induces negligible effects on neighboring qubits in terms of gate
fidelity, frequency and coherence. By extending the method to
using two-tone modulation, we are also able to achieve effective
f
!! "

state depletion. Our methods give a practical and universal
way to reset tunable superconducting qubits and offer a pathway

to achieving high-fidelity reset in large-scale qubit systems.
Beyond qubit reset, parametric modulation-induced interaction
can also be used in thermodynamic reservoir engineering37,58 and
quantum many-body simulations55. Furthermore, this work
provides an efficient way to entangle the qubit state with an
itinerant single photon, particularly useful in quantum commu-
nication and quantum network application54,59,60.

Methods
Hamiltonian with parametric modulation. We consider a qubit-resonator cou-
pled system, which can be described by the Jaynes-Cummings model (ℏ= 1
hereafter)

Hsys ¼ ωq ej i eh jþ ωra
yaþ gqrða

yσ( þ aσþÞ; ð2Þ

where ωq (ωr) is the qubit (resonator) frequency, gqr is the coupling strength
between the qubit and the resonator and σ+ (σ−) is the creation (annihilation)
operator of the qubit. In the interaction picture, when the qubit frequency is
modulated as ωqðtÞ ' ωq þ AðαÞ

m cos½αðωmt þ θmÞ& (α an integer), to leading-term
approximation the system Hamiltonian can be expressed as

Hint ¼ ∑
1

n¼(1
gne

iðnαωmþΔÞtaσþ þ h:c: ð3Þ

where gn ¼ gqrJn
AðαÞ
m

αωm

$ %
eiβn are the effective coupling strengths in the leading term,

gqr is the averaged coupling strength during the modulation, βn ¼ nαθm (
AðαÞ
m

αωm
sinðαθmÞ is the interaction phase, and Jn(x) are Bessel functions of the first kind,

and Δ ¼ ωq ( ωr is the effective detuning between the qubit and the resonator
during the sinusoidal modulation31. Note that for transmon qubits, the modulation
of the qubit frequency also induces a modulation of the coupling strength, the full
expression of which can be found in reference31.
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When the modulation frequency ωm satisfies the constraint nαωm þ Δ ¼ 0 (for
integer n) the Hamiltonian approximates to Hint ¼ gnaσþ þ g)na

yσ( by ignoring
rapidly oscillating terms, and Rabi oscillations occur between states e; lj i and
g; l þ 1
!! "

.

Qubit reset rate. When the qubit is prepared in the excited state ej i, the time
dependent population can be solved by the effective Hamiltonian Heff of equation
(1). The reset rate Γ can be derived as:

Γ ¼ 2min
k
ðjIm½λk&jÞ ¼

1
2 κr (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2r ( 16jgnj

2
q$ %

jgnj< κr=4

κr=2 jgnj≥ κr=4

8
<

: ð4Þ

For ∣gn∣ ≥ κr/4, the reset rate remains at κr/2 and is independent of the effective
coupling ∣gn∣. For ∣gn∣ < κr/4, the reset rate Γ increases with the effective coupling. In
both cases, the reset rate is larger than the free decay rate of the qubit. The
population of the qubit during the parametric reset process can be modeled by

Psjs0 ðtÞ ¼ j sh j expð(iHeff tÞ s0
!! "

j2; ð5Þ

where the system is initially prepared in the state s0
!! "

, and sj i 2 f e; 0j i; g; 1
!! "

g.
When s0

!! "
¼ e; 0j i, the population of the excited state pe can be shown to be

pe ¼ PejeðtÞ ¼

e(
κr t
2

κr t
4 þ 1

& '2 jgnj ¼ κr=4

e(
κr t
2 cosðMtÞ þ κr

4M sinðMtÞ
( )2 jgnj > κr=4; M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16jgn j

2(κ2r
p

4

e(
κr t
2 coshðMtÞ þ κr

4M sinhðMtÞ
( )2 jgnj < κr=4; M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2r(16jgn j

2
p
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